Alphanumonly
alphanumonly 过滤器删除包含非ASCII字符的词项,仅保留字母数字词项。该过滤器在处理仅与基本字母和数字相关的文本时非常有用,排除任何特殊字符或符号。
配置
alphanumonly 过滤器内置于 Zilliz Cloud。要使用它,只需在 analyzer_params 的过滤器部分指定其名称。
- Python
 - Java
 - NodeJS
 - Go
 - cURL
 
analyzer_params = {
    "tokenizer": "standard",
    "filter": ["alphanumonly"],
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter", Collections.singletonList("alphanumonly"));
const analyzer_params = {
    "tokenizer": "standard",
    "filter": ["alphanumonly"],
};
analyzerParams = map[string]any{"tokenizer": "standard", "filter": []any{"alphanumonly"}}
# restful
analyzerParams='{
  "tokenizer": "standard",
  "filter": [
    "alphanumonly"
  ]
}'
alphanumonly 过滤器作用于分词器生成的词项,因此必须与分词器结合使用。有关 Zilliz Cloud 中可用的分词器列表,请参阅分词器参考。
定义 analyzer_params 后,您可以在定义 Collection Schema 时将其应用于 VARCHAR 字段。这使得 Zilliz Cloud 能够使用指定的分析器处理该字段中的文本,以实现高效的分词和过滤。更多信息,请参阅使用示例。
使用示例
在完成 Analyzer 配置后,您可以使用 run_analyzer 方法来验证分词效果是否符合预期。
Analyzer 配置
- Python
 - Java
 - NodeJS
 - Go
 - cURL
 
analyzer_params = {
    "tokenizer": "standard",
    "filter": ["alphanumonly"],
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter", Collections.singletonList("alphanumonly"));
// javascript
analyzerParams = map[string]any{"tokenizer": "standard", "filter": []any{"alphanumonly"}}
# restful
使用 run_analyzer 验证效果
- Python
 - Java
 - NodeJS
 - Go
 - cURL
 
from pymilvus import (
    MilvusClient,
)
client = MilvusClient(
    uri="YOUR_CLUSTER_ENDPOINT",
    token="YOUR_CLUSTER_TOKEN"
)
# Sample text to analyze
sample_text = "Milvus 2.0 @ Scale! #AI #Vector_Databasé"
# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("Standard analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;
ConnectConfig config = ConnectConfig.builder()
        .uri("YOUR_CLUSTER_ENDPOINT")
        .token("YOUR_CLUSTER_TOKEN")
        .build();
MilvusClientV2 client = new MilvusClientV2(config);
List<String> texts = new ArrayList<>();
texts.add("Milvus 2.0 @ Scale! #AI #Vector_Databasé");
RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
        .texts(texts)
        .analyzerParams(analyzerParams)
        .build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
import (
    "context"
    "encoding/json"
    "fmt"
    "github.com/milvus-io/milvus/client/v2/milvusclient"
)
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
    Address: "localhost:19530",
    APIKey:  "YOUR_CLUSTER_TOKEN",
})
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
bs, _ := json.Marshal(analyzerParams)
texts := []string{"Milvus 2.0 @ Scale! #AI #Vector_Databasé"}
option := milvusclient.NewRunAnalyzerOption(texts).
    WithAnalyzerParams(string(bs))
result, err := client.RunAnalyzer(ctx, option)
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
# restful
预期结果
['Milvus', '2', '0', 'Scale', 'AI', 'Vector']