Length
length
过滤器删除不符合指定长度要求的词项,使您能够控制在文本处理过程中保留的词项长度。
配置
length
过滤器是 Zilliz Cloud 中的自定义过滤器,通过在过滤器配置中设置 "type": "length"
来指定。您可以将其配置为分析器参数中的字典,以定义长度限制。
- Python
- Java
- NodeJS
- Go
- cURL
analyzer_params = {
"tokenizer": "standard",
"filter":[{
"type": "length", # Specifies the filter type as length
"max": 10, # Sets the maximum token length to 10 characters
}],
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter",
Collections.singletonList(new HashMap<String, Object>() {{
put("type", "length");
put("max", 10);
}}));
cosnt analyzer_params = {
"tokenizer": "standard",
"filter":[{
"type": "length", # Specifies the filter type as length
"max": 10, # Sets the maximum token length to 10 characters
}],
};
analyzerParams = map[string]any{"tokenizer": "standard",
"filter": []any{map[string]any{
"type": "length",
"max": 10,
}}}
# restful
analyzerParams='{
"tokenizer": "standard",
"filter": [
{
"type": "length",
"max": 10
}
]
}'
length
过滤器接受以下可选参数。
参数 | 描述 |
---|---|
| 设置词元的最大长度。长度大于 |
length
过滤器作用于分词器生成的词项,因此必须与分词器结合使用。有关 Zilliz Cloud 中可用的分词器列表,请参阅分词器参考。
定义 analyzer_params
后,您可以在定义 Collection Schema 时将其应用于 VARCHAR 字段。这使得 Zilliz Cloud 能够使用指定的分析器处理该字段中的文本,以实现高效的分词和过滤。更多信息,请参阅使用示例。
示例输出
在完成 Analyzer 配置后,您可以使用 run_analyzer
方法来验证分词效果是否符合预期。
Analyzer 配置
- Python
- Java
- NodeJS
- Go
- cURL
analyzer_params = {
"tokenizer": "standard",
"filter":[{
"type": "length", # Specifies the filter type as length
"max": 10, # Sets the maximum token length to 10 characters
}],
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "standard");
analyzerParams.put("filter",
Collections.singletonList(new HashMap<String, Object>() {{
put("type", "length");
put("max", 10);
}}));
// javascript
analyzerParams = map[string]any{"tokenizer": "standard",
"filter": []any{map[string]any{
"type": "length",
"max": 10,
}}}
# restful
使用 run_analyzer 验证效果
- Python
- Java
- NodeJS
- Go
- cURL
from pymilvus import (
MilvusClient,
)
client = MilvusClient(uri="YOUR_CLUSTER_ENDPOINT")
# Sample text to analyze
sample_text = "The length filter allows control over token length requirements for text processing."
# Run the standard analyzer with the defined configuration
result = client.run_analyzer(sample_text, analyzer_params)
print("Standard analyzer output:", result)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.vector.request.RunAnalyzerReq;
import io.milvus.v2.service.vector.response.RunAnalyzerResp;
ConnectConfig config = ConnectConfig.builder()
.uri("YOUR_CLUSTER_ENDPOINT")
.build();
MilvusClientV2 client = new MilvusClientV2(config);
List<String> texts = new ArrayList<>();
texts.add("The length filter allows control over token length requirements for text processing.");
RunAnalyzerResp resp = client.runAnalyzer(RunAnalyzerReq.builder()
.texts(texts)
.analyzerParams(analyzerParams)
.build());
List<RunAnalyzerResp.AnalyzerResult> results = resp.getResults();
// javascript
import (
"context"
"encoding/json"
"fmt"
"github.com/milvus-io/milvus/client/v2/milvusclient"
)
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
Address: "localhost:19530",
APIKey: "YOUR_CLUSTER_TOKEN",
})
if err != nil {
fmt.Println(err.Error())
// handle error
}
bs, _ := json.Marshal(analyzerParams)
texts := []string{"The length filter allows control over token length requirements for text processing."}
option := milvusclient.NewRunAnalyzerOption(texts).
WithAnalyzerParams(string(bs))
result, err := client.RunAnalyzer(ctx, option)
if err != nil {
fmt.Println(err.Error())
// handle error
}
# restful
预期结果
['The', 'length', 'filter', 'allows', 'control', 'over', 'token', 'length', 'for', 'text', 'processing']