字符串类型
在 Zilliz Cloud 中,VARCHAR
是用于存储字符串类型的数据类型,适用于可变长度字符串的存储。
在定义一个 VARCHAR
类型的字段时,需要完成如下设置:
-
设置
datatype
为DataType.VARCHAR
。 -
设置
max_length
,用于指定当前VARCHAR
字段可容纳的最大字节数。该参数的取值范围为 1 到 65,535。
Zilliz Cloud 支持为 VARCHAR
字段设置 Null 值和默认值。如需开启这些设置,需要在创建字段时,将 nullable
设置为 True
以及将 default_value
设置为一个字符串。关于 Null 值和默认值的详细情况,可以参考 Nullable 和默认值。
添加 VARCHAR 字段
要在 Zilliz Cloud 中使用字符串类型,需要在创建 Collection 时定义用于存储字符串的 VARCHAR
字段。如下示例演示了如何在创建 Collection Schema 时定义两个 VARCHAR
字段。其中,
-
varchar_field1
用于存放最多 100 字节的字符串,允许为 Null,默认值为"Unknow"
。 -
varchar_field2
用于存放最多 200 字节的字符串,允许为 Null,没有默认值。
如果在创建 Schema 时设置了 enable_dynamic_fields=True
,Zilliz Cloud 允许您插入的数据中包含 Schema 中未定义的字段。但是这可能会使查询复杂度和管理难度增加,进而影响查询性能。关于动态字段的相关内容,可以参考Dynamic Field。
- Python
- Java
- NodeJS
- Go
- cURL
# Import necessary libraries
from pymilvus import MilvusClient, DataType
# Define server address
SERVER_ADDR = "YOUR_CLUSTER_ENDPOINT"
# Create a MilvusClient instance
client = MilvusClient(uri=SERVER_ADDR)
# Define the collection schema
schema = client.create_schema(
auto_id=False,
enable_dynamic_fields=True,
)
# Add `varchar_field1` that supports null values with default value "Unknown"
schema.add_field(field_name="varchar_field1", datatype=DataType.VARCHAR, max_length=100, nullable=True, default_value="Unknown")
# Add `varchar_field2` that supports null values without default value
schema.add_field(field_name="varchar_field2", datatype=DataType.VARCHAR, max_length=200, nullable=True)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;
MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("YOUR_CLUSTER_ENDPOINT")
.build());
CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);
schema.addField(AddFieldReq.builder()
.fieldName("varchar_field1")
.dataType(DataType.VarChar)
.maxLength(100)
.isNullable(true)
.defaultValue("Unknown")
.build());
schema.addField(AddFieldReq.builder()
.fieldName("varchar_field2")
.dataType(DataType.VarChar)
.maxLength(200)
.isNullable(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("pk")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());
schema.addField(AddFieldReq.builder()
.fieldName("embedding")
.dataType(DataType.FloatVector)
.dimension(3)
.build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";
const client = new MilvusClient({
address: `YOUR_CLUSTER_ENDPOINT`
});
const schema = [
{
name: "metadata",
data_type: DataType.JSON,
},
{
name: "pk",
data_type: DataType.Int64,
is_primary_key: true,
},
{
name: "varchar_field2",
data_type: DataType.VarChar,
max_length: 200,
},
{
name: "varchar_field1",
data_type: DataType.VarChar,
max_length: 100,
},
];
import (
"context"
"fmt"
"github.com/milvus-io/milvus/client/v2/column"
"github.com/milvus-io/milvus/client/v2/entity"
"github.com/milvus-io/milvus/client/v2/index"
"github.com/milvus-io/milvus/client/v2/milvusclient"
)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
milvusAddr := "localhost:19530"
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
Address: milvusAddr,
})
if err != nil {
fmt.Println(err.Error())
// handle error
}
defer client.Close(ctx)
schema := entity.NewSchema()
schema.WithField(entity.NewField().
WithName("pk").
WithDataType(entity.FieldTypeInt64).
WithIsPrimaryKey(true),
).WithField(entity.NewField().
WithName("embedding").
WithDataType(entity.FieldTypeFloatVector).
WithDim(3),
).WithField(entity.NewField().
WithName("varchar_field1").
WithDataType(entity.FieldTypeVarChar).
WithMaxLength(100).
WithNullable(true).
WithDefaultValueString("Unknown"),
).WithField(entity.NewField().
WithName("varchar_field2").
WithDataType(entity.FieldTypeVarChar).
WithMaxLength(200).
WithNullable(true),
)
export varcharField1='{
"fieldName": "varchar_field1",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 100
},
"nullable": true
}'
export varcharField2='{
"fieldName": "varchar_field2",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 200
},
"nullable": true
}'
export primaryField='{
"fieldName": "pk",
"dataType": "Int64",
"isPrimary": true
}'
export vectorField='{
"fieldName": "embedding",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 3
}
}'
export schema="{
\"autoID\": false,
\"fields\": [
$varcharField1,
$varcharField2,
$primaryField,
$vectorField
]
}"
设置索引参数
为 VARCHAR 字段设置索引参数是一个可选操作,可以显著提高查询效率。在 Zilliz Cloud 中,索引为向量字段的必选配置;对于标量字段而言为可选配置。
以下示例中,我们为名为 embedding
的向量字段和名为 varchar_field1
的标量字段创建了 AUTOINDEX
索引类型,表示 Zilliz Cloud 会自动根据数据类型创建合适的索引。有关更多信息,请参考 AUTOINDEX。
- Python
- Java
- Go
- NodeJS
- cURL
# Set index params
index_params = client.prepare_index_params()
# Index `varchar_field1` with AUTOINDEX
index_params.add_index(
field_name="varchar_field1",
index_type="AUTOINDEX",
index_name="varchar_index"
)
# Index `embedding` with AUTOINDEX and specify metric_type
index_params.add_index(
field_name="embedding",
index_type="AUTOINDEX", # Use automatic indexing to simplify complex index settings
metric_type="COSINE" # Specify similarity metric type, options include L2, COSINE, or IP
)
import io.milvus.v2.common.IndexParam;
import java.util.*;
List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
.fieldName("varchar_field1")
.indexName("varchar_index")
.indexType(IndexParam.IndexType.AUTOINDEX)
.build());
indexes.add(IndexParam.builder()
.fieldName("embedding")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.COSINE)
.build());
indexOption1 := milvusclient.NewCreateIndexOption("my_collection", "embedding",
index.NewAutoIndex(index.MetricType(entity.IP)))
indexOption2 := milvusclient.NewCreateIndexOption("my_collection", "varchar_field1",
index.NewInvertedIndex())
const indexParams = [{
index_name: 'varchar_index',
field_name: 'varchar_field1',
index_type: IndexType.AUTOINDEX,
)];
indexParams.push({
index_name: 'embedding_index',
field_name: 'embedding',
metric_type: MetricType.COSINE,
index_type: IndexType.AUTOINDEX,
});
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
}
]'
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
},
{
"fieldName": "embedding",
"metricType": "COSINE",
"indexType": "AUTOINDEX"
}
]'
创建 Collection
定义好 Schema 和索引后,我们便可以创建包含字符串字段的 Collection。
- Python
- Java
- Go
- NodeJS
- cURL
# Create Collection
client.create_collection(
collection_name="my_collection",
schema=schema,
index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("my_collection")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
err = client.CreateCollection(ctx,
milvusclient.NewCreateCollectionOption("my_collection", schema).
WithIndexOptions(indexOption1, indexOption2))
if err != nil {
fmt.Println(err.Error())
// handle error
}
await client.create_collection({
collection_name: "my_collection",
schema: schema,
index_params: index_params
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"my_collection\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
## {"code":0,"data":{}}
插入数据
Collection 创建完成后,可以插入包含字符串字段的数据。
- Python
- Java
- Go
- NodeJS
- cURL
# Sample data
data = [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "pk": 2, "embedding": [0.4, 0.5, 0.6]}, # varchar_field2 field is missing, which should be NULL
{"varchar_field1": None, "varchar_field2": None, "pk": 3, "embedding": [0.2, 0.3, 0.1]}, # `varchar_field1` should default to `Unknown`, `varchar_field2` is NULL
{"varchar_field1": "Product C", "varchar_field2": None, "pk": 4, "embedding": [0.5, 0.7, 0.2]}, # `varchar_field2` is NULL
{"varchar_field1": None, "varchar_field2": "Exclusive deal", "pk": 5, "embedding": [0.6, 0.4, 0.8]}, # `varchar_field1` should default to `Unknown`
{"varchar_field1": "Unknown", "varchar_field2": None, "pk": 6, "embedding": [0.8, 0.5, 0.3]}, # `varchar_field2` is NULL
{"varchar_field1": "", "varchar_field2": "Best seller", "pk": 7, "embedding": [0.8, 0.5, 0.3]}, # Empty string is not treated as NULL
]
# Insert data
client.insert(
collection_name="my_collection",
data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;
List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"varchar_field1\": \"Product A\", \"varchar_field2\": \"High quality product\", \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product B\", \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": null, \"varchar_field2\": null, \"pk\": 3, \"embedding\": [0.2, 0.3, 0.1]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product C\", \"varchar_field2\": null, \"pk\": 4, \"embedding\": [0.5, 0.7, 0.2]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": null, \"varchar_field2\": \"Exclusive deal\", \"pk\": 5, \"embedding\": [0.6, 0.4, 0.8]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Unknown\", \"varchar_field2\": null, \"pk\": 6, \"embedding\": [0.8, 0.5, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"\", \"varchar_field2\": \"Best seller\", \"pk\": 7, \"embedding\": [0.8, 0.5, 0.3]}", JsonObject.class));
InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("my_collection")
.data(rows)
.build());
column1, _ := column.NewNullableColumnVarChar("varchar_field1",
[]string{"Product A", "Product B", "Product C", "Unknown", ""},
[]bool{true, true, false, true, false, true, true})
column2, _ := column.NewNullableColumnVarChar("varchar_field2",
[]string{"High quality product", "Exclusive deal", "Best seller"},
[]bool{true, false, false, false, true, false, true})
_, err = client.Insert(ctx, milvusclient.NewColumnBasedInsertOption("my_collection").
WithInt64Column("pk", []int64{1, 2, 3, 4, 5, 6, 7}).
WithFloatVectorColumn("embedding", 3, [][]float32{
{0.1, 0.2, 0.3},
{0.4, 0.5, 0.6},
{0.2, 0.3, 0.1},
{0.5, 0.7, 0.2},
{0.6, 0.4, 0.8},
{0.8, 0.5, 0.3},
{0.8, 0.5, 0.3},
}).
WithColumns(column1, column2),
)
if err != nil {
fmt.Println(err.Error())
// handle err
}
const data = [
{
varchar_field1: "Product A",
varchar_field2: "High quality product",
pk: 1,
embedding: [0.1, 0.2, 0.3],
},
{
varchar_field1: "Product B",
varchar_field2: "Affordable price",
pk: 2,
embedding: [0.4, 0.5, 0.6],
},
{
varchar_field1: "Product C",
varchar_field2: "Best seller",
pk: 3,
embedding: [0.7, 0.8, 0.9],
},
];
await client.insert({
collection_name: "my_collection",
data: data,
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
--data '{
"data": [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "pk": 2, "embedding": [0.4, 0.5, 0.6]},
{"varchar_field1": null, "varchar_field2": null, "pk": 3, "embedding": [0.2, 0.3, 0.1]},
{"varchar_field1": "Product C", "varchar_field2": null, "pk": 4, "embedding": [0.5, 0.7, 0.2]},
{"varchar_field1": null, "varchar_field2": "Exclusive deal", "pk": 5, "embedding": [0.6, 0.4, 0.8]},
{"varchar_field1": "Unknown", "varchar_field2": null, "pk": 6, "embedding": [0.8, 0.5, 0.3]},
{"varchar_field1": "", "varchar_field2": "Best seller", "pk": 7, "embedding": [0.8, 0.5, 0.3]}
],
"collectionName": "my_collection"
}'
## {"code":0,"cost":0,"data":{"insertCount":3,"insertIds":[1,2,3]}}
使用过滤表达式查询
添加字符串字段后,您可以在 query
请求中利用这些字段进行过滤。例如,您可以查询 varchar_field1
为 Product A
的所有数据:
- Python
- Java
- Go
- NodeJS
- cURL
# Filter `varchar_field1` with value "Product A"
filter = 'varchar_field1 == "Product A"'
res = client.query(
collection_name="my_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)
print(res)
# Example output:
# data: [
# "{'varchar_field1': 'Product A', 'varchar_field2': 'High quality product', 'pk': 1}"
# ]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;
String filter = "varchar_field1 == \"Product A\"";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [QueryResp.QueryResult(entity={varchar_field1=Product A, varchar_field2=High quality product, pk=1})]
filter := "varchar_field1 == \"Product A\""
queryResult, err := client.Query(ctx, milvusclient.NewQueryOption("my_collection").
WithFilter(filter).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
fmt.Println("varchar_field1", queryResult.GetColumn("varchar_field1").FieldData().GetScalars())
fmt.Println("varchar_field2", queryResult.GetColumn("varchar_field2").FieldData().GetScalars())
// Output
//
// varchar_field1 string_data:{data:"Product A"}
// varchar_field2 string_data:{data:"High quality product"}
await client.query({
collection_name: 'my_collection',
filter: 'varchar_field1 == "Product A"',
output_fields: ['varchar_field1', 'varchar_field2']
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"filter": "varchar_field1 == \"Product A\"",
"outputFields": ["varchar_field1", "varchar_field2"]
}'
## {"code":0,"cost":0,"data":[{"pk":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}
您也可以参考如下代码查找所有 varchar_field2
字段为 null
的所有 Entity。
- Python
- Java
- Go
- NodeJS
- cURL
# Filter entities where `varchar_field2` is null
filter = 'varchar_field2 is null'
res = client.query(
collection_name="my_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)
print(res)
# Example output:
# data: [
# "{'varchar_field1': 'Product B', 'varchar_field2': None, 'pk': 2}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 3}",
# "{'varchar_field1': 'Product C', 'varchar_field2': None, 'pk': 4}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 6}"
# ]
String filter = "varchar_field2 is null";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [
// QueryResp.QueryResult(entity={varchar_field1=Product B, varchar_field2=null, pk=2}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=3}),
// QueryResp.QueryResult(entity={varchar_field1=Product C, varchar_field2=null, pk=4}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=6})
// ]
filter = "varchar_field2 is null"
queryResult, err = client.Query(ctx, milvusclient.NewQueryOption("my_collection").
WithFilter(filter).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
fmt.Println("varchar_field1", queryResult.GetColumn("varchar_field1"))
fmt.Println("varchar_field2", queryResult.GetColumn("varchar_field2"))
await client.query({
collection_name: 'my_collection',
filter: 'varchar_field2 is null',
output_fields: ['varchar_field1', 'varchar_field2']
});
# restful
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"filter": "varchar_field2 is null",
"outputFields": ["varchar_field1", "varchar_field2"]
}'
如果需要获取 varchar_field1
字段值为 "Unknown"
的所有 Entity,可以参考如下代码进行查询。值得注意的是,因为 varchar_field1
字段的默认值也为 "Unknown"
,查询的结果会包括该字段显式设置为 "Unknown"
的以及值为空的所有 Entity。
- Python
- Java
- Go
- NodeJS
- cURL
# Filter entities with `varchar_field1` with value `Unknown`
filter = 'varchar_field1 == "Unknown"'
res = client.query(
collection_name="my_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)
print(res)
# Example output:
# data: [
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 3}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': 'Exclusive deal', 'pk': 5}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 6}"
# ]
String filter = "varchar_field1 == \"Unknown\"";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());
System.out.println(resp.getQueryResults());
// Output
//
// [
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=3}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=Exclusive deal, pk=5}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=6})
// ]
filter = "varchar_field1 == \"Unknown\""
queryResult, err = client.Query(ctx, milvusclient.NewQueryOption("my_collection").
WithFilter(filter).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
fmt.Println("varchar_field1", queryResult.GetColumn("varchar_field1"))
fmt.Println("varchar_field2", queryResult.GetColumn("varchar_field2"))
// node
await client.query({
collection_name: 'my_collection',
filter: 'varchar_field1 == "Unknown"',
output_fields: ['varchar_field1', 'varchar_field2']
});
# restful
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"filter": "varchar_field1 == \"Unknown\"",
"outputFields": ["varchar_field1", "varchar_field2"]
}'
向量搜索与字符串过滤结合
除了基本的标量字段过滤,您还可以将向量相似度搜索与标量字段过滤结合使用。例如,以下代码展示了如何在向量搜索中添加标量字段的过滤条件:
- Python
- Java
- Go
- NodeJS
- cURL
# Search with string filtering
# Filter `varchar_field2` with value "Best seller"
filter = 'varchar_field2 == "Best seller"'
res = client.search(
collection_name="my_collection",
data=[[0.3, -0.6, 0.1]],
limit=5,
search_params={"params": {"nprobe": 10}},
output_fields=["varchar_field1", "varchar_field2"],
filter=filter
)
print(res)
# Example output:
# data: [
# "[{'id': 7, 'distance': -0.04468163847923279, 'entity': {'varchar_field1': '', 'varchar_field2': 'Best seller'}}]"
# ]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;
String filter = "varchar_field2 == \"Best seller\"";
SearchResp resp = client.search(SearchReq.builder()
.collectionName("my_collection")
.annsField("embedding")
.data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
.topK(5)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.filter(filter)
.build());
System.out.println(resp.getSearchResults());
// Output
//
// [[SearchResp.SearchResult(entity={varchar_field1=, varchar_field2=Best seller}, score=-0.04468164, id=7)]]
queryVector := []float32{0.3, -0.6, 0.1}
filter = "varchar_field2 == \"Best seller\""
annParam := index.NewCustomAnnParam()
annParam.WithExtraParam("nprobe", 10)
resultSets, err := client.Search(ctx, milvusclient.NewSearchOption(
"my_collection", // collectionName
5, // limit
[]entity.Vector{entity.FloatVector(queryVector)},
).WithANNSField("embedding").
WithFilter(filter).
WithAnnParam(annParam).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
for _, resultSet := range resultSets {
fmt.Println("IDs: ", resultSet.IDs.FieldData().GetScalars())
fmt.Println("Scores: ", resultSet.Scores)
fmt.Println("varchar_field1: ", resultSet.GetColumn("varchar_field1"))
fmt.Println("varchar_field2: ", resultSet.GetColumn("varchar_field2"))
}
await client.search({
collection_name: 'my_collection',
data: [0.3, -0.6, 0.1],
limit: 5,
output_fields: ['varchar_field1', 'varchar_field2'],
filter: 'varchar_field2 == "Best seller"'
params: {
nprobe:10
}
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"data": [
[0.3, -0.6, 0.1]
],
"limit": 5,
"searchParams":{
"params":{"nprobe":10}
},
"outputFields": ["varchar_field1", "varchar_field2"],
"filter": "varchar_field2 == \"Best seller\""
}'
## {"code":0,"cost":0,"data":[{"distance":-0.2364331,"id":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}