查看 Collection
您既可以查看当前连接的数据库中已创建的 Collection 名称列表,也可以针对某个 Collection 了解其详细情况。
查看 Collection 列表
如下示例演示了如何查看当前连接的数据库中已创建的 Collection 名称列表。
- Python
- Java
- NodeJS
- Go
- cURL
from pymilvus import MilvusClient, DataType
client = MilvusClient(
    uri="YOUR_CLUSTER_ENDPOINT",
    token="YOUR_CLUSTER_TOKEN"
)
res = client.list_collections()
print(res)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;
import io.milvus.v2.service.collection.response.ListCollectionsResp;
ConnectConfig connectConfig = ConnectConfig.builder()
        .uri("YOUR_CLUSTER_ENDPOINT")
        .token("YOUR_CLUSTER_TOKEN")
        .build();
MilvusClientV2 client = new MilvusClientV2(connectConfig);
ListCollectionsResp resp = client.listCollections();
System.out.println(resp.getCollectionNames());
import { MilvusClient } from '@zilliz/milvus2-sdk-node';
const client = new MilvusClient({
    address: 'localhost:19530',
    token: 'YOUR_CLUSTER_TOKEN'
});
const collections = await client.listCollections();
console.log(collections);
import (
    "context"
    "fmt"
    "github.com/milvus-io/milvus/client/v2/milvusclient"
)
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
milvusAddr := "localhost:19530"
token := "YOUR_CLUSTER_TOKEN"
client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
    Address: milvusAddr,
    APIKey:  token,
})
if err != nil {
    fmt.Println(err.Error())
    // handle err
}
defer client.Close(ctx)
collectionNames, err := client.ListCollections(ctx, milvusclient.NewListCollectionOption())
if err != nil {
    fmt.Println(err.Error())
    // handle error
}
fmt.Println(collectionNames)
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/list" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{}'
如果您已经创建了名为 quick_setup 的 Collection,运行上述示例的结果如下:
["quick_setup"]
查看 Collection 详情
您也可以根据需要查看某个 Collection 的详细情况。如下示例代码中假设您已经创建了名为 quick_setup 的 Collection。
- Python
- Java
- NodeJS
- Go
- cURL
res = client.describe_collection(
    collection_name="quick_setup"
)
print(res)
import io.milvus.v2.service.collection.request.DescribeCollectionReq;
import io.milvus.v2.service.collection.response.DescribeCollectionResp;
DescribeCollectionReq request = DescribeCollectionReq.builder()
        .collectionName("quick_setup")
        .build();
DescribeCollectionResp resp = client.describeCollection(request);
System.out.println(resp);
const res = await client.describeCollection({
    collection_name: "quick_setup"
});
console.log(res);
collection, err := client.DescribeCollection(ctx, milvusclient.NewDescribeCollectionOption("quick_setup"))
if err != nil {
    fmt.Println(err.Error())
    // handle err
}
fmt.Println(collection)
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/describe" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
    "collectionName": "quick_setup"
}'
如果您已经创建了名为 quick_setup 的 Collection,运行上述示例的结果如下:
{
    'collection_name': 'quick_setup', 
    'auto_id': False, 
    'num_shards': 1, 
    'description': '', 
    'fields': [
        {
            'field_id': 100, 
            'name': 'id', 
            'description': '', 
            'type': <DataType.INT64: 5>, 
            'params': {}, 
            'is_primary': True
        }, 
        {
            'field_id': 101, 
            'name': 'vector', 
            'description': '', 
            'type': <DataType.FLOAT_VECTOR: 101>, 
            'params': {'dim': 768}
        }
    ], 
    'functions': [], 
    'aliases': [], 
    'collection_id': 456909630285026300, 
    'consistency_level': 2, 
    'properties': {}, 
    'num_partitions': 1, 
    'enable_dynamic_field': True
}